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abstract. Proving the completeness of classical propositional logic
by using maximal consistent sets is perhaps the most common method
there is, going back to Lindenbaum (though not actually published by
him). It has been extended to a variety of logical formalisms, sometimes
combined with the addition of Henkin constants to handle quantifiers.
Recently a deep-reasoning formalism called nested sequents has been in-
troduced by Kai Brünnler, able to handle a larger variety of modal logics
than are possible with standard Gentzen-type sequent calculi. In this
paper we sketch how yet another variation on the maximality method of
Lindenbaum allows one to prove completeness for nested sequent calculi.
It is certainly not the only method available, but it should be entered
into the record as one more useful tool available to the logician.

1 Introduction

Recently Kai Brünnler introduced a version of deep reasoning called nested
sequents, [1], with systems for a number of common modal logics including
some that lack cut-free sequent calculi in the ordinary sense. Proving com-
pleteness for such systems is most commonly done by what might be called a
systematic backward proof search. One starts with the desired goal and works
backward until either a proof is found or enough information is produced to
generate a counter-model. In [3] it was shown that there are close connections
between nested sequents and prefixed tableaus, and this allows one to transfer
completeness results from prefixed tableau calculi to nested sequent systems.
In addition, syntactic proof of cut-elimination can be given, see [1], and this
allows transferal of completeness results from axiomatic formulations as well.

In this paper we sketch another approach to proving completeness for nested
sequent systems of modal logic. It makes use of a suitably generalized maxi-
mal consistency construction, combined with a version of the introduction of
Henkin witnesses as in first-order completeness arguments. This is not really a
new approach. It has been applied to standard sequent calculi and to tableau
systems, including prefixed ones. For nested sequents the form the construction
takes is somewhat peculiar. A maximality requirement must be met by every
nested subsequent, and Henkin witnesses are themselves nested sequents. We
believe the construction, while fairly simple, has interest so we are presenting
it to the logic community.

1This paper is dedicated to Walter Carnielli on the occasion of his sixtieth birthday.
Thank you Walter, and I wish you many more years and theorems.



2 Melvin Fitting

We begin with a discussion about nested sequent calculi for the logic K,
with some minor modifications to the original formulation. Then we give our
completeness proof for it. Finally we make some brief remarks about how the
work can be extended to other modal logics.

2 Formulas and Uniform Notation

Formuas are built up from atomic formulas, propositional letters, P , Q, . . . .
They are built up using propositional connectives ∧, ∨, ¬, ⊃, and modal oper-
ators � and ♦, in the usual way.

We use the common grouping of formulas into classes that behave alike—α,
β, ν, π. It is often referred to as uniform notation. Compound formulas and
their negations are grouped into those that behave conjunctively, α formulas,
and those that behave disjunctively, β formulas. For each, components are
defined, α1 and α2 for α formulas, and β1 and β2 for β formulas. These are
given in the following tables.

α α1 α2

X ∧ Y X Y
¬(X ∨ Y ) ¬X ¬Y
¬(X ⊃ Y ) X ¬Y

β β1 β2

X ∨ Y X Y
¬(X ∧ Y ) ¬X ¬Y
X ⊃ Y ¬X Y

In a similar way there are the necessary formulas, ν, and possible formulas,
π, and their components. These are given in the following tables.

ν ν0
�X X
¬♦X ¬X

π π0

♦X X
¬�X ¬X

3 Nested Sequents

We sketch a modal nested sequent system for the logic K. There are some
changes from the original formulation in [1], making our work somewhat easier.
The changes are as follows. We do not assume formulas are in negation normal
form. The paper [1] works with multisets, assuming contraction and weakening
rules. We use sets in place of multisets, and drop all structural rules. We do
not allow the empty sequent. And finally, we make use of uniform notation, α,
β, ν, and π. The definition of nested sequent that we use is a recursive one.

DEFINITION 1. A nested sequent is a non-empty finite set of formulas and
nested sequents.

Nested sequents generalize Tait or one-sided sequents. All formulas have
been moved to the right sides of arrows, and the arrows deleted. In effect,
they are disjunctions. Nested sequents for modal logic iterate this idea; nesting
corresponds to necessitation. More formally, let Γ = {X1, . . . , Xn,∆1, . . . ,∆k}
be a nested sequent, where each Xi is a formula and each ∆j is a nested
sequent. Then one defines a translation to ordinary formulas; think of Γ† as
the ‘meaning’ of Γ.

Γ† = X1 ∨ . . . ∨Xn ∨�∆†1 ∨ . . . ∨�∆†k
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Axioms Γ(A,¬A),

A a propositional letter

Double Negation Rule Γ(X)
Γ(¬¬X)

α Rule Γ(α1) Γ(α2)
Γ(α)

β Rule
Γ(β1, β2)

Γ(β)

ν Rule
Γ([ν0])
Γ(ν)

π Rule
Γ(π, [π0, . . .])

Γ(π, [. . .])

Figure 1. Nested Sequent Rules for K

A proof of the soundness of nested sequent systems can be based on this trans-
lation. In this present brief paper we omit discussion of soundness issues.

There are standard notational conventions for nested sequents. Enclosing
outer set brackets are often omitted. A nested sequent that is a member of
another nested sequent has its members listed in square brackets, and is called
a boxed sequent. For example, A,B, [C, [D,E], [F,G]], is the conventional way
of writing {A,B, {C, {D,E}, {F,G}}}. For this, the ‘meaning’ defined above
is A ∨ B ∨ �(C ∨ �(D ∨ E) ∨ �(F ∨G)). We systematically use Γ, ∆, . . . for
nested sequents, boxed or top level.

DEFINITION 2. Subsequents are defined as follows.

1. Γ is a subsequent of Γ.

2. If ∆ ∈ Γ, any subsequent of ∆ is a subsequent of Γ.

Suppose Γ is a nested sequent in which propositional letter P occurs once—
we write Γ(P ) for this. Subsequently, Γ(X) is the result of replacing P in
Γ with X. Similarly for Γ(X,Y ), Γ(∆), and so on. Using this convention,
Figure 1 displays the nested sequent rules for K, from [1] (extended to allow
arbitrary formulas and not just those in negation normal form). Assume Γ(P )
is some nested sequent with one occurrence of propositional letter P , implicit
behind the formulation of the rules displayed. Also we use [. . .] to stand for a
non-empty nested sequent, and [Z, . . .] is the same sequent but with Z added.

Sequent proofs start with axioms and end with the nested sequent being
proved. Proof of a formula is a derivative notion: a proof of the nested sequent
consisting of just the formula X is taken to be a proof of X itself. Figure 2
contains an example of a nested sequent K proof.
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♦(P ∨R),
[
¬P, P,R

]
,
[
¬Q

]
♦(P ∨R),

[
¬P, P ∨R

]
,
[
¬Q

]
♦(P ∨R),

[
¬P

]
,
[
¬Q

]
♦(Q ∨ S),

[
¬P

]
,
[
¬Q,Q, S

]
♦(Q ∨ S),

[
¬P

]
,
[
¬Q,Q ∨ S

]
♦(Q ∨ S),

[
¬P

]
,
[
¬Q

]
♦(P ∨R) ∧ ♦(Q ∨ S),

[
¬P

]
,
[
¬Q

]
♦(P ∨R) ∧ ♦(Q ∨ S),¬♦Q,

[
¬P

]
♦(P ∨R) ∧ ♦(Q ∨ S),¬♦P,¬♦Q
¬(♦P ∧ ♦Q),♦(P ∨R) ∧ ♦(Q ∨ S)
(♦P ∧ ♦Q) ⊃ (♦(P ∨R) ∧ ♦(Q ∨ S))

Figure 2. K Proof Example

4 Dual-Consistency

When proving propositional completeness axiomatically, a set {X1, . . . , Xn} is
called consistent if it is not the case that ¬X1 ∧ . . . ∧ ¬Xn is provable. One
shows that a consistent set extends to a maximal consistent one. Then if one
calls a member of a maximal consistent set true, and a non-member false, it is
verified that this is a standard truth-functional assignment. As it happens, the
introduction of negation is complex to deal with when nested sequents are being
used. We avoid the problem by dualizing everything, both at the beginning of
the argument and at the end. The end game will be discussed in Section 6 but
anticipating, we will call members (never mind members of what for now) false
instead of true. Here at the beginning we make use of the following, which does
not bring negation into the picture.

DEFINITION 3. Call a nested sequent Γ dual-consistent if Γ is not provable
in the sequent calculus for K given in Figure 1 of Section 3.

In the usual treatments of logic, subsets of consistent sets are consistent.
Here is the analog of this for the present setting.

PROPOSITION 4. Suppose ∆ is a subsequent of Γ(∆), sequent ∆∗ is such
that ∆ ⊆ ∆∗, and Γ(∆∗) is like Γ(∆) but with ∆ replaced by ∆∗. If Γ(∆∗) is
dual-consistent, so is Γ(∆).

Proof. We just sketch the basic idea. Suppose Γ(∆) is not dual-consistent,
that is, Γ(∆) is provable. In the final line of the proof of Γ(∆), enlarge ∆
to ∆∗ getting Γ(∆∗), and then ‘propagate upward’ throughout the proof the
addition of formulas and nested sequents that effected this enlargement. Rule
applications remain rule applications, and axioms remain axioms. This converts
the proof of Γ(∆) into one for Γ(∆∗), so Γ(∆∗) is not dual-consistent. �

We also need a version of maximality, and we need it relativized it to a
specified set of formulas. What is maximal now is a subsequent, in a sequent.
Note that formulas and their negations are taken into account. The following
terminology addresses this.

DEFINITION 5. For a set S of formulas, we say a formula X is S determinate
if X belongs to S or is the negation of a formula belonging to S.
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LEMMA 6. Suppose S is a set of formulas that is closed under subformulas.
If α is S determinate so are α1 and α2; if β is S determinate so are β1 and
β2; if ¬¬X is S determinate so is X.

Proof. We show the result for α formulas—the argument is similar in the β
case and simpler for double negations.

Suppose first that α ∈ S. There are three cases to consider. (1) If α =
X ∧ Y then X ∈ S and Y ∈ S because of closure under subformulas, that is,
α1 ∈ S and α2 ∈ S, so these are S determinate. (2) If α = ¬(X ∨ Y ) then
X ∈ S and Y ∈ S, again because of subformula closure. Then α1 = ¬X is S
determinate because it is the negation of a member of S, and similarly for α2.
(3) α = ¬(X ⊃ Y ). This case is a mixture of (1) and (2).

Next suppose that α is the negation of a member of S. Then α cannot be
X ∧ Y , so there are only two cases to consider. (1) α = ¬(X ∨ Y ) where
X ∨ Y ∈ S. Then both X and Y are in S by subformula closure, so α1 = ¬X
and α2 = ¬Y are S determinate since they are negations of members of S. (2)
α = ¬(X ⊃ Y ). This is similar to case (1). �

Now we have the central notion of maximal dual-consistency.

DEFINITION 7. Let Γ(∆) be a nested sequent that is dual-consistent, with ∆
as a subsequent. Also let S be a set of formulas that is closed under subformulas.
We say ∆ is maximal in Γ(∆) with respect to S provided, for each X that is S
determinate, if X 6∈ ∆, the addition of X to ∆ makes Γ(∆) dual-inconsistent.

THE LINDENBAUM CONSTRUCTION: Let Γ(∆) be a dual-consistent se-
quent with a subsequent ∆, and let S be a finite subformula closed set.
It is straightforward to extend ∆ to ∆∗ so that ∆∗ is maximal in Γ(∆∗)
with respect to S. A standard Lindenbaum-style construction will do—
we omit the details. We restrict S to being finite because otherwise we
would be forced to deal with infinite nested sequents, and we would rather
not do so.

Maximality has something like the usual properties one expects from ax-
iomatic completeness proofs, but dualized. For example in the α case below
one might think the conclusion should involve “and” since α formulas are con-
junctive, but in fact the case involves “or.”

PROPOSITION 8. Suppose S is a finite set of formulas that is closed under
subformulas. Let Γ(∆) be dual-consistent, with a subsequent ∆ that is maximal
with respect to the set S.

1. If A is atomic, not both A and ¬A are in ∆.

2. If ¬¬X is S determinate and ¬¬X ∈ ∆ then X ∈ ∆.

3. If α is S determinate and α ∈ ∆ then α1 ∈ ∆ or α2 ∈ ∆.

4. If β is S determinate and β ∈ ∆ then β1 ∈ ∆ and β2 ∈ ∆.

Proof. The cases are as follows.
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1. If both A and ¬A are in ∆, then Γ(∆) is an axiom and hence provable.

2. Assume that ¬¬X is S determinate, and hence so is X by Lemma 6.
Now we proceed contrapositively. Suppose X 6∈ ∆. Using maximality,
Γ(∆∪{X}) is not dual-consistent, and hence is provable. It follows by the
Double Negation Rule that Γ(∆∪{¬¬X}) is also provable, and thus is not
dual-consistent. Since Γ(∆) is dual-consistent, it follows that ¬¬X 6∈ ∆.

3. Assume that α is S determinate, and hence both α1 and α2 also are by
Lemma 6. Again the argument is contrapositive. Suppose α1 6∈ ∆. Max-
imality implies Γ(∆∪{α1}) is not dual-consistent, and hence is provable.
Similarly suppose α2 6∈ ∆; then Γ(∆ ∪ {α2}) is provable. Using the α
Rule, Γ(∆ ∪ {α}) is provable and so not dual-consistent. It follows that
α 6∈ ∆.

4. Similar to the preceding case.

�

5 Henkin Witnesses

Dual-consistency and maximality will allow us to take care of propositional
connectives. We still need machinery for the modal operators. What is pre-
sented in this section is an analog of a familiar step in standard axiomatic
completeness proofs in modal logic.

HENKIN-LINDENBAUM EXPANSION: Let Γ(∆) be a dual-consistent nested
sequent with ∆ as a subsequent. We define a Henkin-Lindenbaum expan-
sion of ∆ in Γ(∆) to be a nested sequent Γ(∆∗), where ∆∗ is constructed
in the following way.

1. First some definitions. Suppose ν ∈ ∆. The Henkin witness for ν
in ∆ is the nested sequent [ν0, π1

0 , . . . , π
n
0 ] where π1, . . . , πn are all

the π formulas in ∆. A Henkin witness in ∆ is a Henkin witness
for ν in ∆, for some ν. We say [ν0, π1

0 , . . . , π
n
0 ] is new to ∆ if it is

not a subset of any nested sequent that is a member of ∆. We call
the set S of all subformulas of ν0, π1

0 , . . . , π
n
0 the foundation set of

[ν0, π1
0 , . . . , π

n
0 ].

Let ∆′ be the result of adding to ∆ all Henkin witnesses that are
new to ∆. Γ(∆′) is also dual-consistent (shown below in Lemma 10).

2. For each Henkin witness [ν0, π1
0 , . . . , π

n
0 ] that was added to ∆ to get

∆′, enlarge it to a subsequent that is maximal in Γ with respect to
its foundation set, using the Lindenbaum construction as sketched
in Section 4. Let ∆∗ be the result of thus expanding every Henkin
witness in ∆′.

3. The outcome is a dual-consistent nested sequent, Γ(∆∗) where ∆ ⊆
∆∗, ∆ and ∆∗ contain the same formulas, but ∆∗ also contains, for
each Henkin witness that is new to ∆, a nested sequent extending
that Henkin witness, maximally dual-consistent in Γ with respect to
the foundation set of that Henkin witness.
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EXAMPLE 9. Suppose ∆ = [�B,�C,♦D,♦E,F ] and Γ(∆) = A, [�B,�C,
♦D,♦E,F ]. Then ∆ has two Henkin witnesses, [B,D,E] and [C,D,E], in Γ.
The outcome of step 1 above is the nested sequent A, [�B,�C,♦D,♦E,F, [B,
D,E], [C,D,E]]. Then the outcome of step 2 is the nested sequent A, [�B,�C,
♦D,♦E,F, [B,D,E]∗, [C,D,E]∗] where [B,D,E]∗ is some extension of [B,D,
E] that is maximally dual-consistent in Γ with respect to the set of all subfor-
mulas of B,D,E, and similarly for [C,D,E]∗.

In step 1 of the Henkin-Lindenbaum Expansion process we said certain
nested sequents would be dual-consistent. We now show this.

LEMMA 10. Suppose Γ(∆) is dual-consistent and ∆′ is the result of adding to
∆ all Henkin witnesses that are new to ∆. Then Γ(∆′) is also dual-consistent.

Proof. We show the result of adding a single Henkin witness preserves dual-
consistency. The Proposition then follows by iterating this.

Assume that ν ∈ ∆, and π1, . . . , πn are all the π formulas in ∆. Suppose
Γ(∆ ∪ {[ν0, π1

0 , . . . , π
n
0 ]}) were not dual-consistent. Then it would be provable.

By repeated application of the π Rule, Γ(∆∪ {[ν0]}) would be provable. Then
by the ν Rule, Γ(∆) would be provable, and hence not dual-consistent. It
follows that if Γ(∆) is dual-consistent, so is the result of adding one Henkin
witness to ∆. �

6 Completeness

With the basic work out of the way, we can now prove completeness itself.
Let X be a formula that is fixed for the rest of this section, and suppose X
is not provable in the nested sequent system for K. Using the unprovability of
X we describe a process for generating a sequence of more and more elaborate
nested sequents Γ1, Γ2, . . . . Every subsequent of each Γi will have an associated
foundation set, as specified in the Henkin-Lindenbaum Expansion of Section 5,
and will be maximally dual-consistent in Γi with respect to its foundation set.
As a bookkeeping device, certain subsequents of each Γi will be marked as
finished.

Since X is not provable, the nested sequent {X} is dual-consistent. This
sequent is treated a little differently from later ones in the process since it is
not a subsequent of anything else. Take the set of all subformulas of X as the
foundation set for {X}, enlarge {X} to a set that is maximally dual-consistent,
with respect to its foundation set, and call the result Γ1.

Next suppose Γn has been defined, every subsequent of it has an associated
foundation set and is maximally dual-consistent with respect to it. If every
subsequent of Γn is marked as finished, the construction stops. Otherwise
choose a subsequent, ∆, that is not marked as finished, and consider Γn(∆).
Let Γn(∆∗) be a Henkin-Lindenbaum expansion of ∆ in Γn(∆), as specified in
Section 5, and set Γn+1 = Γn(∆∗). Mark ∆∗ itself as finished in Γn+1, and
also mark as finished any subsequents that were carried over unchanged from
Γn and were marked as finished there. Note that if Γn = Γ1, it is its only
unfinished subsequent. The process just described still applies, but Γ1 is, in
effect, in an empty context.
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This process must stop after a finite number of steps, for the following reason.
The modal degree of each member of a Henkin witness in ∆ must be less (by 1)
than the modal degree of some member of ∆. Conseqently, if Γn+1 = Γn(∆∗),
the maximal modal degrees of the foundation sets of members of ∆∗ must be
less than the maximal modal degree of the foundation set of ∆∗ itself. When
modal degrees reach 0 the process stops. Let us say Γ∞ is the final member of
the sequence just described.

Now we construct a a Kripke model M = 〈G,R,
〉 from Γ∞, as follows.
Let the set of possible worlds, G, be the collection of all subsequents of Γ∞.
Next we specify the accessibility relation, R. For ∆,Ω ∈ G, let ∆RΩ pro-

vided Ω ∈ ∆.
Finally we have the truth-at-a-world relation. For an atomic formula A, set

M,∆ 
 A just when A 6∈ ∆. Note that this condition is dual to the one usually
seen in completeness proofs.

We now have a model M = 〈G,R,
〉. For it we have a kind of dual truth
lemma, Proposition 12. In proving this we make use of structural induction, but
it is not quite the usual version based on complexity of formulas as measured by
degree. Instead the version we use is the following—it is reasonably intuitive,
and a formal proof that it works can be found in [2], as Theorem 2.6.3.

PROPOSITION 11. Every formula has property Q provided:

1. every atomic formula and its negation has property Q;

2. if X has property Q so does ¬¬X;

3. if α1 and α2 have property Q so does α;

4. if β1 and β2 have property Q so does β;

5. if ν0 has property Q so does ν;

6. if π0 has property Q so does π.

Now here is our dual truth lemma, proved using Proposition 11.

PROPOSITION 12. Let M = 〈G,R,
〉 be the model constructed above, let
∆ ∈ G, and let S be the foundation set of ∆. For each formula Z that is S
determinate: Z ∈ ∆ =⇒M,∆ 6
 Z;

Proof. By induction on complexity we show that, if Z is S determinate where
S is the foundation set of ∆, and Z ∈ ∆, then M,∆ 6
 Z. There are several
cases.

Atomic Case: Suppose A is atomic and A ∈ ∆. ThenM,∆ 6
 A by definition
of the model.

Negated Atomic Case: Suppose A is atomic and ¬A ∈ ∆. Then A 6∈ ∆ by
Proposition 8 part 1, soM,∆ 
 A, again by definition of the model, and
hence M,∆ 6
 ¬A.
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Double Negation Case: Suppose the result is known for Z, ¬¬Z is S deter-
minate where S is the foundation set of ∆, and ¬¬Z ∈ ∆. By Lemma 6,
Z is S determinate, and by Proposition 8 part 2, Z ∈ ∆. Then by the
induction hypothesis, M,∆ 6
 Z. It follows that M,∆ 6
 ¬¬Z.

α Case: Suppose α is S determinate where S is the foundation set of ∆, the
result is known for α1 and α2, and α ∈ ∆. By Lemma 6 both α1 and
α2 are S determinate, and α1 ∈ ∆ or α2 ∈ ∆, by Proposition 8 part 3.
By the induction hypothesis, M,∆ 6
 α1 or M,∆ 6
 α2. In either case,
M,∆ 6
 α.

β Case: Similar to the previous case.

ν Case: Suppose ν is S determinate where S is the foundation set of ∆, the
result is known for ν0, and ν ∈ ∆. In the process of constructing Γ∞, at
some point a Henkin witness in ∆, [ν0, π1

0 , . . . , π
n
0 ] has been expanded to

produce a member, Ω of ∆. Since ν0 must be in the foundation set of Ω,
by the induction hypothesis, M,Ω 6
 ν0. And since Ω ∈ ∆, ∆RΩ. Then
M,∆ 6
 ν.

π Case: Suppose π is S determinate where S is the foundation set of ∆, the
result is known for π0, and π ∈ ∆. In this case π0 must be in every
Henkin witness in ∆. It follows that π0 must belong to every subsequent
that is a member of ∆, and must be a member of its foundation set. Then
by the induction hypothesis, M,Ω 6
 π0 for every Ω ∈ G with ∆RΩ, and
so M,∆ 6
 π.

�

Since the construction of Γ∞ begins with a sequent containing X, then X
must be a member of Γ∞ itself. By the Proposition above, M,Γ∞ 6
 X, and
so X is not K-valid.

7 Other Modal Logics

There are extensions of the nested sequent system described in Section 3 for
many standard modal logics, see [1; 3]. We do not state the rules here. Com-
pleteness for K is easiest to establish, with that for T and D a close second.
Things become harder when transitivity is involved because the construction
process described in Section 6, when appropriately adapted to these logics,
need not terminate. There are two solutions, at least, for this problem.

First, we can simply accept the fact that the construction process goes on
forever. Then we need to define an appropriate notion of limit for the sequence
Γ1, Γ2, . . . , and this is not difficult. Conceptually the limit would be a nested
sequent that allowed infinitely deep nesting. This is not ‘legal’ given the way we
have defined nested sequents, as sets, because it violates well-foundedness. It
is, however, an intuitively plausible thing, and the notion of direct limit, from
category theory, is a formal substitute. We then carry out the construction of
a model using this limit, instead of using the last term of the sequence as we
did above.
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Second, since all formulas are subformulas of the formula we are trying to
prove, if a construction goes on forever there must be repetition. One can
terminate work on a subsequent when it duplicates one of its ‘ancestors.’ In
this way work can be forced to halt, as it did for K, after a finite number of
steps. Unfortunately, this method won’t extend to admit quantifiers, though
the one with limits, described above, can be made to work.

We do not go into details of these more complex constructions here. In this
paper we merely wanted to show how the maximal consistent set construction,
familiar from classical propositional logic, could be extended to nested sequent
calculi, and enough has now been said to give the general idea.
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